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Abstract

A new hybrid numerical approach, using Weighted Sum of Squared Objective Functions (WSSOF) algorithm, was developed for multi-
responses optimization of carbon dioxide oxidative coupling of methang QZXM). The optimization was aimed to obtain optimal process
parameters and catalyst compositions with high catalytic performances. The hybrid numerical approach combined the single-response modeling
and optimization using Response Surface Methodology (RSM) and WSSOF technique of multi-responses optimization. The hybrid algorithm
resulted in Pareto-optimal solutions and an additional criterion was proposed over the solutions to obtain a final unique optimal solution. The
simultaneous maximum responses gfs@lectivity and yield were obtained at the corresponding optimal independent variables. The results
of the multi-response optimization could be used to facilitate in recommending the suitable operating conditions and catalyst compositions
for the CQ OCM process.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction the by-products.

The high CQ/CH, ratio in Natuna’s natural gas compo- 2CHa + COz2 = CzHe + CO+ H20

sitions, comprising of up to 71% carbon dioxide and 28% A g3, = +106 kJ/mol (1)
) . 298

methang1], should be strategically utilized for the produc-
tion of higher hydrocarbons, Ilqwd_fuels and other important 2CHs + 2C0y — CoHy + 2CO+ 2H,0
chemicals. Recently, the conversion of methane i1ch-
drocarbons (ethane and ethylene) using carbon dioxide as an A Hjqg = +284 kJ/mol (2
oxidant (carbon dioxide oxidative coupling of methane (CO
OCM)) has received considerable attent[@r9]. Eqs.(1)
and (2)are the two main C®OCM reaction schemes to pro-
duce G hydrocarbons, while carbon monoxide and water ar

Catalyst screening of Cetbased catalysts for GACM

e Process over binary and ternary metal oxid@ deter-

mined that the 15wt.% CaO-5wt.% MnO/CgCatalyst as

the most potential. Interestingly, the stability test showed

that the 15wt.% CaO-5wt.% MnO/CeQ@atalyst was sta-
— ble with no obvious coking during 20 h of reaction time
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The development of a highly efficient catalyst is important sive optimization study of simulated moving bed process was
and the key to obtain a highly efficient catalyst is the catalyst also reported using a robust genetic algorithm optimization
design[10-13] The relationships among catalyst composi- techniqug22].
tions, process parameters and catalyst compositions toward The main objective of this paper is to develop a new hybrid
the catalytic performances are very complex from the engi- numerical approach for the simultaneous multi-responses op-
neering and chemistry points of view, but the determination timization in the CQ OCM process. A key feature of the hy-
of a suitable catalyst is crucial for the G@CM process. brid numerical approach is the development of the Weighting
Preferably, the very complex relation should be modeled at Sum of Squared Objective Functions (WSSOF) algorithm to
a molecular level in the catalyst design to obtain a suitable the simultaneous maximization of two responses, i.e4 CH
catalyst compositions and optimal operating conditions. The conversion and &selectivity, CH, conversion and gyield,
optimal operating parameters, such as thex/CBls ratio or G, selectivity and G yield, as the following task after
and reactor temperature, and the catalyst compositions in thethe development of single-response models. In this hybrid
CeO-supported catalyst, provide essential information for numerical approach, the Nelder—-Mead Simplex method was
industrial CGQ OCM process. utilized in the algorithm for solving the unconstrained opti-

Pertaining to the catalyst design, some previous re- mization problem.
searchers introduced artificial neural network (ANN) to de-
sign the catalyst$10-13] The selection of optimization
method is very important to design an optimal catalyst as 2. Numerical methods and experimental design
well as the relations between process parameters and catalytic ) ) o
performance$14]. The previous researchers suggested that 2-1- Téchnique for single-response optimization
artificial neural network is feasible and many experiments
can be avoidablflL4]. According to the complex interaction
among the catalyst compositions, the process parameters an
the metal-support with no clear reaction mechanism in the
CO, OCM process, it is more useful for the catalyst design
using empirical models especially in the optimization studies.
A single-response optimization is usually insufficient for the
real CQ OCM process due to the fact that mostresponses, i.e.
methane conversion, products selectivity and yield, are de-
pendent. Therefore, simultaneous multi-responses techniqu

combined with the statistical single-response modeling using range between those of single-response optimization. It is

RSM IS Superiar. Empirical and pseudo-phenomenological supposed that the simultaneous optimum is located within the
modeling approaches have been employed by researchers

[14-16]for optimizing the catalytic process. The empirical ranges of single-respopses optimi.za.tion_. In this section, the
e - , N single-response modeling and optimization are presented.

modeling is efficient for the catalytic process optimization,
but the drawback is that the model does not describe the fun-
damental theory or actual phenomena. The empirical model
may be more appropriate for process optimization when the
kinetic mechanism is not well known.

Concerning the multi-responses optimization, a graphical
multi-responses optimization technique was implemented for

xylitol crystallization from synthetic solutiofiL7], but it is i : .
not useful for more than two independent variables or highly of the d|§tance from'the pc')m't to the design cerfd-25}
The design of experiment is intended to reduce the number

non-linear models. In another study, a generalized distanceof experiments and to arranae the experiments with various
approach technique was developed to optimize process vari- P 9 P

ables in the production of protoplast from mycelijiig]. cpmbinations of independeqt variables. In the rotatablg de-
The optimization procedure was carried out by searching S'fg?]’ the_standahrd error, which (fjepends on the cloordmates
independent variables that minimize the distance function 0 td € pot:nt on ;f'e' respo_ns;a] sur acefat wlklm:llsleva lﬁated
over the experimental region in the simultaneous optimal ‘1” ont %.Coe 'C'?nts’ ";t N samle or aTE]omtsit a;‘;rare
critical parameters. Recently, the robust and efficient tech—t € same Istance from the centra pomt._ € value .
nique of the elitist Non-dominated Sorting Genetic Algo- rotafcablhty depends on the n.umlber Qf points in the factorial
rithm (NSGA) was used to obtain the solution of the complex portion of the design, which is given in E) [23-25]
multi-objectives optimization probleifi6,19-21] A hybrid a = (F)Y4 3)
genetic algorithm (GA) with artificial neural network was

also developefil 6] to design optimal catalyst and operating whereF is the number of points in the cube portion of the
conditions in the @OCM process. In addition, a comprehen- design £=2%, k is the number of factors). Since there are

Itis necessary to obtain the optimal single-response mod-
gls andthe corresponding independentvariables before multi-
fesponses optimization is carried out. The optimal single-
responses are used for obtaining information of the optimiza-
tion boundary ranges. For example, in multi-responses opti-
mization, the simultaneous optimaj €electivity and yield is
resulted in the entire range between both individual optimal
values. In addition, reactor temperature and(@d, ratio

process parameters) and wt.% CaO and wt.% MnO in the
e catalyst (catalyst compositions) are searched in the

2.1.1. Design of experiment using central composite
design

A Central Composite Rotatable Design (CCRD) for four
independent variables was employed to design the experi-
mentg26] in which the variance of the predicted responée,
at some points of independent variablésis only a function
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Table 1
Experimental ranges and levels of factors or independent variables
Factors K) Range and levelsq)

—a (—2) -1 0 +1 fo (+2)
CO,/CHjy ratio (X1) (=) 1 15 2 25 3
Reactor temperaturey) (K) 973 1048 1123 1198 1273
wt.% CaO K3) (%) 5 10 15 20 25
wt.% MnO (X4) (%) 1 3 5 7 9

four factors, thee number is equal to®2(=16) points, while variables are coded for statistical calculation according to

o is equal to (16%* (=2) according to Eq(3). Eq.(4) [23-25]
Process parameters of GfQH, ratio and reactor temper- 2% X )
it — +X
ature, and catalyst compositions of wt.% CaO and wt.% MnO x; = o lX ( ma;( : min)] 4)
max — min

in the CeQ-supported catalyst were selected as the indepen-
dent variables. The ranges of the independent variables aravherex; is the dimensionless coded value of ttrevariable,
based on the conditions screened prior to optimization and X; the natural value of thigh variable Xmax andXmin are the

are often used in the literatur§$,5,7]. Pertaining to space  highest and the lowest limits of tlih variable, respectively.
velocity, gas hourly space velocity (GHSV) was fixed dur- The experimental design matrix resulted by the CCD re-
ing the reaction. The fixed space velocity value was chosenvealed inTable 2 [26]consists of 26 sets of coded conditions
based on the variables screening prior to optimization suchexpressed in natural values. The design consists of a two-level
that performance of the catalyst is notinfluenced significantly full factorial design (2 = 16), eight star points and two center

by the variable in the tested range. The ranges and levels usegoints. Based on this table, the experiments for obtaining the
in the experiments are given Trable 1in which X; denotes responses, i.e. GHconversion X(CHg)), C> hydrocarbons
COp/CHg4ratio, X, denotes reactor temperature, whilgand selectivity §(Cz)) and G hydrocarbons yieldY(Cy)) are car-

X4 denote wt.% CaO and wt.% MnO in the Cg6upported ried out at the corresponding independent variables addressed
catalyst, respectively26]. In the experimental design, all in the experimental design matrix. These experimental data

Table 2
Experimental design matrix in their natural values and experimental results
Run no. Experimental designh matrix of independent variables (uncoded) Experimental results
CO,/CHyg Reactor wt.% CaO Ksz) wt.% MnO (X4) X(CHy) (%) SCy) (%) Y(Cy) (%)
ratio (X1) temperatureXy)
1 15 1048 10 3 53 69.01 1.82
2 15 1048 10 7 20 78.15 1.72
3 15 1048 20 3 176 24.62 0.43
4 15 1048 20 7 25 42.64 0.53
5 15 1198 10 3 5 32.71 2.60
6 15 1198 10 7 B0 35.98 281
7 15 1198 20 3 D2 27.84 2.76
8 15 1198 20 7 D3 34.62 3.13
9 25 1048 10 3 58 60.20 161
10 25 1048 10 7 29 78.37 1.80
11 25 1048 20 3 02 55.95 1.63
12 25 1048 20 7 155 64.79 1.00
13 25 1198 10 3 X4 18.73 1.82
14 25 1198 10 7 80 33.12 2.88
15 25 1198 20 3 1311 16.21 217
16 25 1198 20 7 189 30.78 3.35
17 1 1123 15 5 27 70.51 1.60
18 3 1123 15 5 27 65.18 161
19 2 973 15 5 B4 24.30 0.13
20 2 1273 15 5 169 14.32 2.38
21 2 1123 5 5 83 74.63 3.23
22 2 1123 25 5 30 66.30 245
23 2 1123 15 1 41 74.07 3.49
24 2 1123 15 9 43 75.24 341
25 2 1123 15 5 81 72.58 3.49
26 2 1123 15 5 D6 75.64 3.83

Note X(CHg), CHs conversion (%)S(C,), C, hydrocarbons selectivity (%)(C,), C, hydrocarbons yield (%); catalyst weight, 2 g; total feed flow rate,
100 ml/min; total pressure, 1 atm.
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are used for validating the single-response model of the cat-in Eq. (6).

alytic CO, OCM process. The sequence of experiment was , ,

randomized in order to minimize the effects of uncontrolled ¥ = fo+ X'b + X' BX (6)
factors. Detail description of the single-response modeling, here

the catalyst preparation and the catalyst testing were reportec}N

elsewherg26]. X1 B1
X2 B2
. . . X = , b= and
2.1.2. Single-response modeling using Response Surface X3 B3
Methodology (RSM) X4 B4
The central composite design results revealetable 2 -
were analyzed using Response Surface Methodology. Al [ Pz P13 P14
single-responses were modeled using the RSM corresponded 2 2 2
to independent variablg&6]. The RSM is a technique con- B21 B2 B2z Paa
sisting of[23-25} (a) designing of experiments to provide p_ | 2 2 2 for g;; = B
adequate and reliable measurements of the response, (b) de- Ba1 P32 B Baa e
veloping a mathematical model having the best fit to the data 2 2 B8 7
obtained from the experimental design, and (c) determining Bar  Paz  Pas 8
the optimal value of the independent variables that produces L 2 2 2 jal

a maximum or minimum response. In this paper, the design _ ) _

of experiment and the Response Surface Methodology were ~ The stationary point can be calculated in E4).

employed using STATISTICA, version 6, software (StatSoft Xo=—1B"1 )

Inc., Tulsa, USA). 2
By the RSM, a quadratic polynomial equation was devel-  The predicted response at the stationary point is approxi-

oped to predict the responses as a function of independeninated in Eq(8).

variables involving their interactioj23-25] In general, the

response for the quadratic polynomial is described in(&y. Yo=po+ %Xéb (8)
4 4 The characteristic of the stationary point at the critical re-
Y =80+ Zﬂjxj + Z,Bijf + Zﬂinin (5) sponse is determined from the sign and magnitude of the

j=1 j=1 i<j eigenvalues Xj) [23,25,27] The eigenvalues are obtained

) ] ) o from the roots of the determinant relation as given in Eq.
whereYis the predicted respongg, the intercept coefficient, 9).

pj the linear termsgj; the squared termg;j the interaction
terms, and; andX represent the uncoded independentvari- |B — AI| =0 (9)
ables. The coefficients of the models for the three responses . ) ) o
were estimated using multiple regression analysis technique T the Ai are all positive, therXo is a point of minimum
included in the RSM. Fit quality of the models was judged €SPOnse; if the; are all negative, theXo is a point of max-
from their coefficients of correlation and determination. imum responsg25,27} However, if the; have different
Pertaining to single-response optimization, the Nelder— SigNsXo is a saddle point. Transformation of the fitted model
Mead Simplex method was used to look for the optimal con- mt_o a new coordinate system with the origin at the stationary
ditions in which each response variable achieved a maximumPint Xo and thus rotation of the axes until they are paral-
value. The single-response optimization produces a maxi- € _to the pr|.n0|pal axes help to charactgnze the stationary
mum CH conversion, @ selectivity and G yield indepen- point of the fitted modelf23—-25] An equation developed by

dently with respect to a set of optimal process parameters anothe_ tra.nsfc?rma'tion is called the canonical form of the model,
catalyst compositions. which is given in Eq(10)

Y = Yo + Awd + Aaw3 + Azw3 + Aawg (10)

2.1.3. Canonical analysis of stationary point

VectorX that maximizes the predicted responses is called Wherew; (i=1, 2, 3, 4) denotes the transformed independent
the Stationary point and Comprises Xf, Xo, X3 and Xj. variables or the canonical variables.
The stationary point exists such that the partial derivatives of
predicted response over those points equal to zero. The sta2.2. Theory for multi-responses optimization
tionary point could represent a point of maximum response,
a point of minimum response or a saddle point. The part of  In fact, there is a vector of objectiveB(X)={F1(X),
the canonical analysis shows a nature of the stationary pointFa(X), ..., Fu(X)} where M denotes the number of ob-
[23—-25] In general, pertaining to the second order considera- jectives, that must be considered in chemical engineer-
tion, the model can be expressed in matrix notation as writtening process. The optimization techniques are developed to
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find a set of decision parameterd={X1, Xz, ..., Xn}
where N is the number of independent variables, defined
as the optimal independent variables. As the number of re-
sponses increases, the optimal solutions are likely to be-
come complex and less easily quantified. Therefore, the
development of multi-responses optimization strategy en-
ables a numerically solvable and realistic design problem
[14,28]

The task in multi-responses optimization is to create a
non-inferior solution to a set of problems and then select F,
among its members a solution that satisfies the objectives
[22,29] Generally, the mathematical description of multi- A
responses optimization is concerned with the minimization Fia
or maximization of a vector of objective functions(X), F
subject to a number of constraints and/or bounds as defined
in Eq.(11) [27,29-30]

minimize F(X) = [Fi(X), Fa(X), ..., Fy(X)]7

XenV

subjectto :

X,

(a)

Non-inferior
solutions

>
>

(b) F,

2B

F

2

Fig. 1. Technique for solving multi-response optimization problem: (a) map-
ping from parameter spacej into objective function space\(; (b) Pareto-
optimal solutions.

Gi(X) =0, i=1...,1
H;(X) <0, j=1..,J
Xt <Xe<X?, k=1..,N
M=>2

11)

to be a Pareto-optimal point or a non-inferior solution point
for multi-responses optimization if and only if there is no
X € 2 such thatFy(X) < Fy(X") forall Me {1, 2,..., M}

for minimization. A Pareto set is defined such that when we
: T - i : i move from one point to another, at least one objective func-
andH;(X) is thejth mequillltyL(J:onstralnt_s. Thehvariableis  tion improves and at least one other worsens. In the two-
varied in the bounds of{;, X;']. The objective space means  gimensional illustration, the set of non-inferior solution is
the space to which the objective vector belongs. The set of yepicted inFig. 1(b) in which the Pareto-optimal solution
all feasible pointsX is called the feasible regioR, but in points lie on the curve between points C and D. Points A
fact, there is no unique solution 'to this proble;m if any of ang B represent a specific non-inferior solution points be-
the components d%(X) are competing. The multi-responses  c5yse an improvement in one objectifa, requires an in-
optimization concept is subsequently defined more precisely crement in the other objectivEs,, such thaFig <Fia and

by considering a feasible regiose] for the parameter space Fop>Fon.

(X e 9" that satisfies all the constraints as written in Eq. ~ geyveral methods are available for solving multi-responses
(12) [27,30] optimization problem, for example, weighted sum strategy

In this problem there arl variables withJ inequality con-
straints and equality constraints. The function vecte(X)
is the objective functiongG;i(X) theith equality constraints

Q2= {(XenV) [30—32] e-constraint methof8,30,31,33] goal attainment
Gi(X) =0 P I method[28,30] and Non-dominated Sorting Genetic Algo-
. ! - T (12) rithm[19,22,28]}to obtain the Pareto set. Among the methods,
subjectto : H;(X) <0, j=1..J the NSGA is the most powerful method for solving a com-

Xt <Xy <X!, k=1..N plex multi-responses optimization problem. In the optimiza-
tion of CO, OCM process, the WSSOF method is proposed
to solve the optimization of process parameters and cata-
lyst composition in combination with the Response Surface
Methodology.

Particularly, the multi-responses optimization problem,
described in Eq(11), can be formulated by converting the

problem into a scalar single-response optimization prob-

The formulation allows us to define the corresponding fea-
sible region () for the objective function spac# (e #™) as
formulated in Eq(13).

A= {Fe®M} whereF = F(X)

13
subjectto: Xe 2 (13)

The mapping of the parameter spag {nto the objective
function space A) represented for a two-dimensional case
is depicted inFig. 1(a) [30]. Therefore, a non-inferior solu-
tion is defined from the feasible region of objective function
space (1) within the parameter space of individual objec-
tive functions offF(X). The solutions are known as Pareto-
optimal or non-dominated solutions. A vecr e £2 is said

lem, f(X), which is easy to be solved using unconstrained

single-response optimization technique. The WSSOF tech-
nique allows a simpler algorithm, but unfortunately, the so-

lution obtained depends largely on the values assigned to
the weighting factors chosen. The scalar single-response
equation converted from multi-responses optimization prob-

lem is expressed in E¢14) [21,27,30-31,34jwhich con-
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siders the Weighted Sum of Squared Objective Functionsof the normalized responses are generated. The normal-

method[32]: ization of each response can be performed by employing
, Eq. (15).
maximize f(F;, W)=Y W, Fi(X)? N F1— F- . Fp — F:
ximize f(Fr. W) = Wi Fi(X) PO Sk W S ki (15)
i=1 (14) Fr — Fp Fy — F;
2
subjectto: Y W;,=1 and O0<W; <1 The next task is choosing a maximum point of the gener-
i=1 ated)_ F; data with respect to maximum responses simulta-

neously. At this condition, the optimal independent variables
are attained. The corresponding optimal weighting factors,
responses, and independent variables are determined by in-
terpolation technique.

wheref(F;,W) is called the utility function and the paramet-
ric weighting factors i) are under the constraint se®).
Generally, multi-responses optimization studies try to find the
best tradeoff among more than one objective or to calculate
all non-inferior solutions.

Inthe equationa)V; andW, denote weighting factors with
respect to the objective functions; (X) andF2(X), respec-
tively. The coupled responses, i.e.€&lectivity and Gyield,
CH, conversion and gselectivity, or CH conversion and
C, yield, are assigned to the objective functioR§X), and
the problem lies in attaching the weighting factors to eac
objective function. The weighting factors do not necessarily
correspond directly to the relative importance of the objec-
tive functions. The maximization of E§14) is interpreted
as selection ofM; andW, weighting factors for which the
slope of the line comprising the weighting factors leads to
the solution point where the line touches the boundary of codes.. , L i
The underlying problem is that there are many combinations Basically, the multi-responses optimization deals with the

of Wy andW, values to convince the non-inferior solution generation and selection of non-inferior solution points or
Pareto-optimal solutions. The techniques for multi-responses

2.4. Algorithm of WSSOF technique in multi-responses
optimization

In this case, the multi-responses optimization utilizes
the single-response models developed by the R38).

h The boundary limits in the multi-responses optimization
are determined by minimizing the responses independently
in single-response optimization. The detail single-response
model development using the RSM was reported else-
where [26]. The Nelder-Mead Simplex method was
used in single-response optimization using MATLAB

point optimization are wide and various. In this paper, the weighted

. o L ) sum of square objective functions is developed. The WS-
2.3: Additional criterion for determination of final SOF converts the multi-responses problem into a scalar
optimal responses single-response one by creating a weighted sum of square

) o ) of all the response functions as mentioned in Et{)
Theoretically, all sets of non-inferior solutions at corre- [21,27,30-32,34]

sponding weighting factors are acceptable. In a real pro- = pegail of the WSSOF algorithm in the multi-responses
cess, it is recommended to choose a set of operating CONyptimization can be stated as follows:

ditions that will be adjusted to get high catalytic perfor-

mances. In fact, the sets of solutions are not the final so-Step 1. Develop the independent response modEigX)
lution of the process optimization problem. The subsequent andF2(X)) using Response Surface Methodology supported
task of the non-inferior solutions is the selection of final by the number of experimental data.

optimal criterion, which requires an additional knowledge _

about the system. In this case, the sum of the objective func-StéP 2. Get values of maximum of the responses by
tions, > "F(X), is proposed as the final optimal criterion in minimizing the mod_els mdependently Of_ each (_)the.r us-
the CQ OCM optimization. The idea is based upon the Ing NeI_der—Mead Slmple?( glgorlthm. _Th's step Is alme_d
main objective that the responses are maximized simulta-t© obtain the boundary limits of multi-responses. In this
neously. For example, in the multi-responses optimization St€P:

of Cz selectivity and yield of the COOCM process, the o maximizegco Fi(X) = Ff(X*), at this optimum point
maximum G selectivity and yield are desired. It is sup- F2(X*) = F5(X*);

posed that when £selectivity and yield achieved theirmax-  § maximize xeo F2(X) = FY(X*), at this optimum point
imum values simultaneously, sum of both responses also Fi(X*) = FLE(X*) 2 ’

achieved maximum. In this case, the variation of weight- ! -1 '

ing factors allows the generation of corresponding Se- Step 3. Formulate a multi-responses optimization prob-
lectivity and yield values with respect to the non-inferior lem by utilizing the single-response models according to
solutions. The additional criterion is developed by sum- Eq.(11).

ming both normalized responses which in turn the pair -

data of weighting factors, normalized responses and summ,?)é'grwze F(X) = Fi(X)
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Step 4. Convert the multi-responses optimization problem
in Step 3 into a single-response optimization problem by in-
troducing weighting factord)V;, according to Eq(14).

2
maximize f(Fi, W) = le W; - Fi(X)?
1=
2
subjectto : Z W;=1 and 0<W; <1
i=1

Step 5. Solve the generated scalar single-response opti-
mization problems using unconstrained optimization tech-
nique with respect to the variation of the weighting factor
(W). Boundary limits of the searching are based on the re-
sults of Step 2. Use the Nelder—Mead Simplex technique for
multi-variable unconstrained optimization to solve the scalar
single-response optimization. Find the solutionXof and
F(X) values corresponding to each combination\gfsub-
jecttod W, =1, andW; > 0. The detail sub-algorithm for this
step can be written as follows:

Step 5a. Pick a starting pointg. Set initial W, =[0 1]"

219
3. Results and discussions
3.1. Single-response optimization of £OCM process

The empirical single-response modeling of £OCM
process over CaO-MnO/CeQCratalyst was developed by
RSM based on design of experiment using CCRD. The mod-
els of CH; conversion, @ hydrocarbon selectivity and yield
were developed as a function of the process parameters, i.e.
COy/CHg4 ratio (X1), reactor temperaturexg), and the cata-
lyst compositions, i.e. wt.% CaCX§) and wt.% MnO Ka).

The models of CHl conversion, @ hydrocarbons selectivity
and yield were described in Eq4.6—18) respectivel\j26].

FcH, conversiof X) = 230.9612— 4.1100X1 — 0.4251X,
—2.1151X3 + 1.2208X 4 — 1.8843X7
+0.0002X3 — 0.0024X3 + 0.0232X%
+0.0107X1 X2 + 0.0995X1 X3
—0.2087X1X4 + 0.0019X2X3

— 0.0008X,X4 — 0.0204X3Xs  (16)

means that the searching is started from the boundariesFCZSelecﬁvit)(x) — 3480035+ 177.6118X; + 6.3335X,

Fa(X*) = FY(X*) and Fy(X*) = FL(X*).

Step 5b. Put the scalar single-response model of @d)
as a function file.

Step 5¢c. Solve the scalar single-response unconstrained op-

timization problem (Eq(14)) in Step 5b using Nelder—-Mead
Simplex technique. This step produces the optimal values
of X', F1(X") danFy(X") with respect to the variation of
weighting facto.

Step 5d. Calculate the normalized optimal responses values
(F1(X*) and F»(X*)) according to Eq(15). Calculate sum

of both normalized responses valueSH(X*) = F1(X*) +
F2(X™)).

Step 5e. IsW; <1 ? If yes, updat®V; values and go to Step
5b. If no, terminate.

Step 6. Select a maximum value of the sum of normalized
responses at eadhk variations.

Step 7. Get the corresponding values ¥f, F1(X") and
F»(X") using interpolation method.

In this algorithm, the single-response optimization prob-

lem can be solved using a standard unconstrained opti-

mization algorithm of Nelder—Mead Simplex technid88g],
which is a robust algorithm for problems that are very non-
linear or have a number of discontinuities.

—16.6266X3 + 11.9748X4
— 15.6574x% — 0.0029%5 — 0.1304X3

—0.5532x2 — 0.1286X1 X
+1.5858Y1 X3 + 1.172X1X4
+0.0144X>,X3 — 0.0063X2X 4

+0.0202X3X4 17)

Feyyield(X) = —1500778+ 12.7327X1 + 0.2579X >
—0.6948X3 — 1.3511 X4 — 2.2464X?
—0.0001X3 — 0.0101X3 — 0.0250%3
—0.0044X1 X7 + 0.0536X1 X3
+0.0754X1 X4 + 0.0008 X2 X3

+0.0014X,X4 — 0.0021X3X 4 (18)

In the methane conversion model, EbB), the regression
coefficients are estimated with a satisfactory determination
coefficient R2) of 0.975. The methane conversion model has
a considerable fithess between the experimental and the pre-
dicted values. Meanwhile, the regression coefficients pf C
hydrocarbons selectivity model, Ed.7), are estimated with
adequate determination coefficieRe) of 0.803 indicates a
fairly good agreement between the experimental and the pre-
dicted values. The £hydrocarbons yield model stated in Eq.
(18)with R? of 0.952 implies a reasonable fit between the ex-
perimental and the predicted values. The modelis valid in the
range of operating conditions described previoj26].
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Table 3 and high CQ/CHg ratio (about 2). In addition, the maximum
Independent _optimgl values of,Gydrocarbons selectivity from single- Cy hydrocarbons yield is attained at 3.93% with respect to
response optimization COy,/CH, ratio, reactor temperature, wt.% CaO and wt.%

Independent variableXJ Location of Maximum G MnO of 2.0, 1175K, 15.3% and 7.3%, respectively, as re-
optimum selectvity ) \ealed iriTable 4 The optimal G yield was achieved at higher

CO/CH; ratio (1) 1.9 reactor temperature (1123—-1148 K) and highy@@H, ratio

5;:’? Oa/ftg;gemﬁ;atcl;ifjsg% %) 1083 2 8262 (about 2), which is in agreement with other researchers re-

Wt.% MnO in the catalystXa) (%) 68 sults[5,7,8] The subsequent task of this work is focused on

finding the simultaneous maximum values of both responses.

The canonical analysis based on the stationary point of

. L. ) 3.2. Interpretation of multi-responses optimization
the CH; conversion, @ hydrocarbons selectivity and yield P P P

model are revealed in EgEL9)—(21) respectively. technique
Y1 = 2.756— 1.8913»? — 0.006w3 + 0.000303 3.2.1. A hybrid numerical approach of WSSOF
5 technique
+ 0.0337wj (19) Basically, the relation between catalysts compositions,
Y, = 82.6022— 15.72061)% — 0_53431,5 - 0.0866w§ process parameters and the catalytic reaction performances
cannot be described in a simple empirical mathematical
—0.0024w} (20) model. The mathematical models for gldonversion, G
Y3 = 11.8116— 2.2474w? — 0.0244w3 — 0.009815 selectivity and yield are complex that depend on the cata-
lyst composition and operating conditions, etc. The empir-
—0.00013 (21) ical modeling using RSM combined with multi-responses

optimization is useful for optimizing the GGDCM process

in certain ranges of independent variables before the kinetic
studies are carried out, but the models may be meaningless
Pphysically and phenomenologically. The hybrid method is
also useful for exploring the interaction between the vari-
ables towards the process performances. The empirical mod-
eling and the multi-responses optimization method are useful
for designing a catalyst composition in relation with the pro-
cess parameters and validated with some experimental data.
The results of the hybrid multi-responses optimization can
be used to recommend the operating conditions and catalyst
compositions for further experimental works in @OCM
process especially in the kinetic studies.

A numerical approach is implemented in this paper to
optimize the simultaneous responses over the independent
variables. The single-response modeling and optimization
were conducted prior to multi-responses optimization using
the Response Surface Methodology and the Nelder-Mead
Simplex technique, respectively. The hybrid numerical ap-
proach combines the single-response modeling using RSM
and solving the multi-responses optimization using WSSOF
technique. Meanwhile, an additional criterion was proposed
to obtain a final unique solution. In the multi-responses opti-
mization, the numerical WSSOF technique is proposed by
converting the multi-responses optimization into a scalar

whereYy, Y2, andYs stand for the canonical form of the GH
conversion, @selectivity and yield models, respectively. The
mixed or different eigenvalues signs in E#9) indicate that

the CH, conversion model has a shape like a saddle at the sta
tionary point[26,27], which consequently does not present a
unigue optimum point. The different trend is shown byse-
lectivity and yield models in Eq$20) and (21)respectively.
Both models show all negative eigenvalues indicate a unique
maximum G selectivity at the stationary point. The different
magnitudes of eigenvalues reveal an elliptical contour shape,
which means the effect of interaction among the independent
variables is importar[27].

The multi-variables single-response optimization was
performed using the Nelder-Mead Simplex technique.
Tables 3 and 4eveal the independent optimal values of
C, hydrocarbon selectivity and yield responses, respectively,
together with their optimal independent variables. From
Table 3 the G hydrocarbons selectivity achieves a maxi-
mum value of 82.62% at the corresponding optimal factors
of CO,/CHqg ratio, reactor temperature, wt.% CaO and wt.%
MnO being 1.9, 1080K, 8.2% and 6.8%, respectively. The
results of the single-response optimizat[@6] is closed to
the result by Wang et aJ5,7] and Cai et al[8] in which a
high G, selectivity was achieved at lower reactor temperature

Table 4 single-response problem as aforementioned in(E4).
Independent optimal values op@ydrocarbons yield from single-response The detail numerical algorithm for the multi-responses op-
optimization timization using the WSSOF technique was described clearly
Independent variableX} Location of Maximum G in the previous section. The numerical technique can be

optimum yield (%) treated by introducing the weighting factoid and W,
CO,/CHg ratio (Xy) 2.0 corresponding td-1(X) and F»(X), respectively. The two
Reactor temperature&) (K) 1175 393 weighting factors do not necessarily correspond directly to
wt.% CaO in the catalysi) (%) 153 the relative importance of the objectives. Sets of non-inferior
wt.% MnO in the catalystXs) (%) 7.3

solution points or Pareto-optimal solutions are obtained. In a
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Fig. 2. Relationship of weighting factors variation and objective functions
(C, selectivity and yield) in Pareto-optimal solutions.

non-inferior solution set, no decrease can be made in any of

the objectives without causing a simultaneous increase in on
or more of the other objectives. One of the weighting factors
(W) corresponding td-1(X) is varied in the range of 0-1,
while another\{\,) with respect td-»(X) is varied conversely
between 1 and 0 according to the constrain that suiwpf
andW, equal to 1[32]. Each weighting factor variation pro-

duces a scalar single-response optimization problem, which

resulted in an optimal response corresponding with optimal
decision variablesX). These treatments give a set of solu-
tion points or Pareto-optimal solution after whole weighting
factor was varied.

In fact, the non-inferior solution points at corresponding
weighting factors variation are not the final solution of the
problem. It is still difficult to recommend a set of operat-

ing conditions and catalyst compositions that are suitable to

achieve a high gselectivity and yield simultaneously. The
subsequent selection of those non-inferior solution points for
a unique optimal solution requires a final decision criterion,

which needs additional knowledge about the system. In this

case, sum of the objective functions,F(X), is proposed
as the final optimal criterion in the GADCM process opti-

mization. As aresult, the final optimal values of the responses

corresponding to the optimal independent variables are gen
erated.

3.2.2. Effect of weighting factors variation to the
Pareto-optimal solution points

Generally, the multi-responses optimization attempts to
find the best tradeoff among more than one objective or to
calculate all non-inferior solutions. In this case, the effect of
weighting factors variations are showrHigs. 2—4pertaining
to the simultaneous optimization obGelectivity and yield,
CHg4 conversion and gselectivity, and Clg conversion and
C, yield, respectively.

Fig. 2 takes into account the variation effect W and
Ws to the objective functionsH(X)) of C, selectivity and
yield at whichWj is varied in the range of 0.01-0, while
consequently\, is varied in the range of 0.99-1. Itis shown
that increasingV; from 0 to 0.01 at decreasatl, from 1
to 0.99 leads to increased objective function value ef C
selectivity, F1(X), and simultaneously decreases Yield,
F2(X). The zero value oWy and the unity value o\, dur-
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Fig. 3. Relationship of weighting factors variation and objective functions
(CHa4 conversion and gselectivity) in Pareto-optimal solutions.

ing the multi-responses optimization mean a single-response
optimization ofF2(X) as revealed in the algorithm of Step

€. Meanwhile on the contrary, the unity value \6f and

the zero value ofV, during the multi-response optimiza-
tion mean an individual response optimizatiorr@€X). This
phenomenon is formulated in Step 2 of WSSOF algorithm
to obtain the boundary limits of multi-responses optimiza-
tion. In term of simultaneous fCselectivity and yield opti-
mization, the G hydrocarbons selectivity achieves 82.62%
(FlU(X*)) when the G yield is 2.98% @-(X*)) at the same
independent variables. In the contrary, the optimah@dro-
carbons yield is achieved at 3.93%5{()(*)), while the cor-
responding @ hydrocarbons selectivity is 59.63%’{((X *))
at the same independent variables. The correlations indi-
cate an opposing trend between the two responses where
the increment of one response lowers the other one and vice
versa.

Moreover, variation effect ofM; and W, to the objec-
tive functions of CH conversion F1(X)) and G selectiv-
ity (F2(X)) is depicted inFig. 3, whereW; is varied in the
range of 0.6—0.99, while consequenty is varied in the
range of 0.4-0.01. Increasing; from 0.6 to 0.99 at de-
creasedW, from 0.4 to 0.01 leads to increased objective
function of CH; conversion and simultaneously decreases

C, selectivity. In additionFig. 4takes into account the vari-
ation effect of weighting coefficients to the objective func-
tions of CH, conversion F1(X)) and G yield (F1(X)). It

is shown that decreasirlyy; from 0.0236 to 0 at increased
W, from 0.9764 to 1 leads to decreased objective function
value of CH; conversion and simultaneously increases C
yield.

N
o © . ©°
o © » O

CH, Conversion (F; (X)), %
C, Yield (F, (X)), %

8
7.7 ’ . : i 3.84

w,0.0236 0.02  0.015 001  0.005 0

W,09764 098 0985 099 0995 1

Fig. 4. Relationship of weighting factors variation and objective functions
(CHjy conversion and gyield) in Pareto-optimal solutions.
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Fig. 5. Pareto-optimal solution for multi-responses optimization ef C
selectivity and yield in CQ OCM process.

3.2.3. Generation of Pareto-optimal solution in
multi-responses optimization

It is worth noting that single- and multi-responses opti-
mizations problems are conceptually different. In the multi-
responses optimization, there may not be a best solution
(global optimum) with respect to both objectives. Instead,
there are an entire set of optimal solutions that are evenly
good which leads to a situation wherein a set of non-inferior
solutionsis obtained rather than a unique solut36—37]

Figs. 5—7depict the Pareto-optimal solutions of the £0
OCM process optimization over CaO-MnO/CeCatalyst
corresponding to the simultaneous optimization p&€lec-
tivity and yield, CH, conversion and gselectivity, and Cly
conversion and &yield, respectively. The trend of the Pareto-
optimal solutions shown in the figures coincides with that of
the weighting factors variation as depictedrigs. 2—4 From
the figures, it can be shown that if tRe(X) increases, conse-
quently theFo(X) is worsened. Thus, it could not be deduced

that any of these non-dominated solutions in the Pareto set is

an acceptable final solution. The next task is how to choose
a unique final solution. The final solution is important in rec-
ommending the suitable operating conditions and catalyst

82.63
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82.55}
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) N S— — |

82.46—. 5 i .
3.38 34 3.45 3.5 3.55
CH, Conversion (F(X)), %

Fig. 6. Pareto-optimal solution for multi-responses optimization of, CH
conversion and gselectivity in CQ OCM process.
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Fig. 7. Pareto-optimal solution for multi-responses optimization of, CH
conversion and gyield in CO; OCM process.

compositions of the process. The selection of the final so-
lution over the entire non-inferior solution requires an addi-
tional knowledge of the system, and often, this knowledge is
intuitive and non-quantifiable. In this paper, the choice of the
final solution is based on the sum of both objective functions,
YF(X). As mentioned before, the unique optimum is chosen
at maximum of the sum of objective functions. The final cri-
terion means that the unique optimal solution corresponds to
the highest g selectivity and yield, Cld conversion and &£
selectivity, or CH conversion and gyield simultaneously.
The Pareto set is useful, however, since it narrows the choices
and helps to guide the decision maker in selecting the desired
operating variables or preferred solution from among the set
of Pareto-optimal points.

3.2.4. Location of optimal process parameters and

catalyst compositions in multi-responses optimization of
CO, OCM

Location of the optimal process parameters and the cat-
alyst compositions for the multi-responses optimization of

1.6
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F12 Z1.2

pe} kel
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Fig. 8. Location of final optimal conditions for sir'rlultaneoug;siélectivity
and yield optimization using maximum normalizEd(X) as criterion from
Pareto-optimal solution.
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Fig. 9. Location of final optimal conditions for simultaneous £t¢dnver-
sion and G selectivity optimization using maximum normalizét¥ (X) as
criterion from Pareto-optimal solution.

CO, OCM are depicted ifrigs. 8—10for C, selectivity and
yield, CH, conversion and gselectivity, and Cljconversion
and G yield, respectively. The objective functions in this sec-
tion are presented as the normalized objective functions for-
mulated in Eq(15). Pertaining to simultaneous optimization
of Cy selectivity and yield, the optimal process parameters
results depicted ifrig. 8are 1.99 and 1127 K for C£CH4
ratio and reactor temperature, respectively. The simultane-
ous optimal G selectivity and yield in this optimization is

in accordance with the result by Wang et [&l,7] and Cai

et al. [8] at which a high G yield was achieved at higher
reactor temperature and high @GHjy ratio (about 2). How-
ever, the high g selectivity was attained at lower reactor
temperature. In addition, the final optimal compositions of
CaO-MnO/CeQ catalyst are 12.78% and 6.39% for wt.%
CaO and wt.% MnO, respectively. Particularly, the unique fi-
nal maximum G selectivity and yield are included as one of
the Pareto-optimal solutions set as revealdéign 5. In fact,
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Fig. 10. Location of final optimal conditions for simultaneous £¢tn-
version and @ yield optimization using maximum normalizedF(X) as
criterion from Pareto-optimal solution.
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the optimal values of decision variables are located within
the range of the individual response optimization using RSM
except for the wt.% MnO.

Fig. 9takes into account the location of simultaneous max-
imum CH, conversion and gselectivity in which the final
optimal conditions are shown at G&TH4 ratio 1.88 and re-
actor temperature 1084 K, respectively. Meanwhile, the final
optimal catalyst compositions are obtained at 8.04 wt.% CaO
and 6.88 wt.% MnQ in the Cefasupported catalyst. The opti-
mal decision factors of multi-responses optimization of4CH
conversion and gyield as depicted irFig. 10resulted in
the final optimal conditions of 2.01 and 1191 K for @OH,4
ratio and reactor temperature, respectively. The correspond-
ing optimal catalyst compositions are 16.09 wt.% CaO and
7.67wt.% MnO in the Ce®@supported catalyst.

3.3. Multi-responses optimization results of £OCM

3.3.1. Simultaneous optimization of €electivity and
yield

The simultaneous multi-responses optimization results are
revealed inTable 5together with the corresponding op-
timal independent variables. It is shown that the simulta-
neous optimal multi-responses are achieved at values of
76.56% and 3.74% for£hydrocarbons selectivity and yield,
respectively. In fact, the results are lower than those ob-
tained from the single-response optimization described in
Tables 3 and 4The optimal process parameters and cata-
lyst compositions from the multi-responses optimization are
achieved at C@QICHqy ratio and reactor temperature of 1.99
and 1127 K, respectively, and the wt.% CaO and wt.% MnO
of 12.78% and 6.39%, respectively. According to the results,
the optimalindependent variables are located within the range
between those from the single-response optimization except
for the wt.% MnO in the catalyst as revealedFiy. 8 The
distinct trend of wt.% MnO may be due to the complexity
of the optimization problem of the GADCM process in the
numerical computation. It implies that there exist different
factors influencing both responses. The reactor temperature
has the highest effect indicated by a high diversity in the opti-
mal reactor temperature between multi- and single-responses,
while the wt.% MnO has the lowest effect. The interaction
between reactor temperature and wt.% CaO has also signifi-
cantly affected the responsi2s].

Pertaining to the relationship between reactor temperature
and wt.% CaO, the previous results also indicate that a high
C> selectivity is achieved at lower reactor temperature and
wt.% CaO in the catalyst, while a highy@ield is achieved
at higher reactor temperature and wt.% CaO in the catalyst.
The considerable £hydrocarbons yield at high reactor tem-
perature is related to a high methane conversion. Increasing
CaO content in the catalyst enhances the @@sorption on
the catalyst surface due to increasing catalyst basicity and im-
proved the methane conversior, §electivity and G yield.
Interaction of reactor temperature and wt.% CaO in the cat-
alyst X2X3) gives a considerable significant effect towards
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Table 5
Simultaneous optimal multi-responses of $&lectivity and yield and its corresponding factors location

Simultaneous optimal multi-responses

Corresponding weighting
coefficient ()

Response Maximum value (%)
C, selectivity F1(X)) 76.56 W; =0.0018
Cy yield (F2(X)) 3.74 W, =0.9982

Location of factors for simultaneous optimal multi-responses

Factor/independent variable

Optimum value

CO,/CHjy ratio (X1)

Reactor temperature&$) (K)
wt.% CaO in the catalysig) (%)
wt.% MnO in the catalystXs) (%)

1.99
1127

1278

6.39

C, hydrocarbons yield as reported in the previous p&&r

respectively. The operating conditions results can also

In fact, a higher reactor temperature leads to enhancement obe shown inFig. 9. In fact, the simultaneous optimal,C

methane conversion and, @ydrocarbons yield but dimin-
ished the G hydrocarbons selectivitj26]. Unfortunately,
high reactor temperature is not selective toh@drocarbons.

selectivity is closed to that of the optimal single-response.
In the single-response optimization, the €&lectivity has a
maximum performance at low reactor temperature, while a

In the case of the high reactor temperature, methane mayhigh CH; conversion is achieved at high reactor temperature.
be largely converted into carbon monoxide rather than C However, the simultaneous optimization of g£ebnversion
hydrocarbons. Based on this observation, the catalyst playsand G selectivity is significantly affected on lowering the
an important role in promoting the product selectivity to C  optimal reactor temperature. Itis implied that a lower reactor
hydrocarbon and in inhibiting the reaction to CO and water. temperature leads to a highep €electivity, while a higher
According to thermodynamics equilibrium calculations, the reactor temperature leads to a highy@eld.

equilibrium constant increases with the reactor temperature
for an endothermic reaction such as £OCM. The larger

equilibrium constant shifts the reaction to the right and in- C; yield
creases the equilibrium conversion.

3.3.3. Simultaneous optimization of gEbnversion and

Table 7demonstrates the multi-responses optimization of

simultaneous Chiconversion and &yield including its cor-

3.3.2. Simultaneous optimization of gebnversion and
C, selectivity

The simultaneous CHconversion and & selectivity
optimization results are revealedTiable 6 In this table, the
simultaneous optimal CiHconversion and £hydrocarbons

responding optimal conditions. It is shown that the simul-
taneous optimal Cliconversion and gyield responses are
obtained at 9.07% and 3.91%, respectively. Fii@ble 7itis
revealed that the simultaneous optimal £tdnversion and
C>, hydrocarbons yield are achieved at £CH, ratio and

selectivity are achieved at values of 3.48% and 82.56%, reactor temperature of 2.01 and 1191K, respectively, and
respectively. The corresponding optimal process parametersvt.% CaO and wt.% MnO of 16.09% and 7.67%, respec-
and catalyst compositions are achieved at the/C8, ratio tively. In fact, the simultaneous optimal Gldonversion and
and reactor temperature of 1.88 and 1084 K, respectively, C, yield are attained at high reactor temperature (1191 K). It
and the wt.% CaO and wt.% MnO of 8.04% and 6.88%, is suggested that both GHonversion and gyield are en-

Table 6
Simultaneous optimal multi-responses of £¢bnversion and £selectivity and its corresponding factors location

Simultaneous optimal multi-responses Corresponding weighting

coefficient (\)
Responses Maximum value (%)
CHg conversion F1(X)) 3.48 W; =0.966
C, selectivity F2(X)) 82.56 W, =0.034

Location of factors for simultaneous optimal multi-responses

Factor/independent variable Optimum value

CO,/CHjy ratio (X1) 1.88
Reactor temperature{) (K) 1084
wt.% CaO in the catalysig) (%) 8.04

wt.% MnO in the catalystXs) (%) 6.88
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Table 7

Simultaneous optimal multi-responses of Stbnversion and £yield and its corresponding factors location

Simultaneous optimal multi-responses Corresponding weighting
coefficient ()

Responses Maximum value (%)

CHg conversion F1(X)) 9.07 W; =0.015

Cy yield (F2(X)) 3.91 W, =0.985

Location of factors for simultaneous optimal multi-responses

Factor Optimum value

CO,/CHjy ratio (X1) 2.01

Reactor temperatur&y) (K) 1191

wt.% CaO in the catalysig) (%) 16.09

wt.% MnO in the catalystXs) (%) 7.67

Table 8

Result validations of the final optimal point in the multi-responses optimization ae@ctivity and yield

C, yield (%) G selectivity (%)

Fmulti-responses Fexperimental % Relative Fmulti-responses Fexperimental % Relative
errof error

3.74 3.76 66 76.56 65.27 17.30

3.74 3.39 1®@2 76.56 63.56 20.45

3.74 3.49 730 76.56 67.92 12.72

3.74 3.35 1178 76.56 67.21 13.92

Average relative error 7.47 16.10

Note Operating conditions: C£)CHj ratio, 1.99; reactor temperature, 1127 K; catalyst, 12.78 wt.% Ca0-6.39 wt.% Mn@/CeO
* % Relative erroe (|Fexperimenrquhi-responsek) x 100%.

Fe experiment

hanced at a high reactor temperature as described elsewhemnances of the experimental works are still lower than that
[26]. from the multi-responses optimization.

Indeed, the empirical modeling using RSM combined with
multi-responses optimization is useful for optimizing the
CO, OCM process in certain ranges of independent variables
before kinetic studies are implemented. The empirical mod-
eling and the multi-responses optimization method is useful
for designing a catalyst as well as exploring the interaction
among the variables towards the process performances. The
results of the hybrid multi-responses optimization can be used
to recommend the operating conditions and catalyst compo-
sitions for further experimental works in G@CM process
especially in the kinetic studies.

3.4. Results validation and benefit of multi-responses
optimization in CQ OCM process

In this optimization, there are three multi-responses opti-
mization combinations where two responses are simultane-
ously applied for each combination, i.ep Gelectivity and
yield, CHy conversion and gselectivity, and Cl conver-
sion and G yield. In this case, the optimization ohbGelec-
tivity and yield is chosen for the recommendation in order
to suggest the operating conditions and the catalyst compo-
sitions. The reason for this choice is that @eld involves
CH4 conversion and gselectivity as mentioned in the pre-
vious section. It is expected that the simultaneous optimiza- 4. Conclusions
tion of C, selectivity and yield takes into account the high

performance of Chiconversion, @ selectivity and G yield A new multi-responses optimization algorithm using
simultaneously. Weighted Sum of Squared Objective Functions technique to
Moreover, the experimental validations of @OCM pro- obtain Pareto-optimal solutions was developed. A unique op-
cess with respect to the multi-responses optimization,of C timal point among the Pareto set was resulted by consider-
selectivity and yield are revealed Trable 8 In this valida- ing an additional optimal criterion. The algorithm success-

tion, the G selectivity and yield at the final optimal point fully optimized CQ/CHy4 ratio, reactor temperature, wt.%
are compared with those from experimental data at the sim-CaO and wt.% MnO in the catalyst in order to maximize
ilar conditions. From the table, it is shown that the average two responses simultaneously, i.e.l§/drocarbons selectiv-
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7.47%, respectively. However, it is shown that the perfor- CH4 conversion and &yield. The hybrid numerical approach
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